Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
PeerJ ; 11: e15024, 2023.
Article in English | MEDLINE | ID: covidwho-2290901

ABSTRACT

Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Immunoglobulin G/analysis , Immunoglobulin M/analysis , COVID-19 Testing
2.
Vaccine ; 41(21): 3337-3346, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2293136

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Mice , Humans , Antibodies, Neutralizing , Antibodies, Viral , Dipeptidyl Peptidase 4 , Immunity, Cellular , Mice, Transgenic , Adjuvants, Immunologic , Recombinant Proteins , Vaccines, Subunit , Spike Glycoprotein, Coronavirus
3.
Clin Infect Dis ; 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-2227297

ABSTRACT

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic zoonotic betacoronaviruses and a global public health concern. Better undersetting of the immune responses to MERS-CoV is needed to characterize the correlates of protection and durability of the immunity and to aid in developing preventative and therapeutic interventions. While MERS-CoV-specific circulating antibodies could persist for several years post-recovery, their waning raises concerns about their durability and role in protection. Nonetheless, memory B and T cells could provide long-lasting protective immunity despite the serum antibodies levels. METHODS: Serological and flow cytometric analysis of MERS-CoV-specific immune responses were performed on samples collected from a cohort of recovered individuals who required intensive care unit (ICU) admission as well as hospital or home isolation several years after infection to characterize the longevity and quality of humoral and cellular immune responses. RESULTS: Our data showed that MERS-CoV infection could elicit robust long-lasting virus-specific binding and neutralizing antibodies as well as T and B cell responses up to 6.9 years post-infection regardless of disease severity or need for ICU admission. Apart from the persistent high antibody titers, this response was characterized by B cell subsets with antibody-independent functions as demonstrated by their ability to produce TNF-α, IL-6, and IFN-γ cytokines in response to antigen stimulation. Furthermore, virus-specific activation of memory CD8+ and CD4+ T cell subsets from MERS-recovered patients resulted in secretion of high levels of TNF-α, IL-17 and IFN-γ. CONCLUSIONS: MERS-CoV infection could elicit robust long-lasting virus-specific humoral and cellular responses.

4.
Saudi Med J ; 43(6): 567-571, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1893431

ABSTRACT

OBJECTIVES: To evaluate hematological parameters and thrombotic profiles of healthy individuals who received Pfizer-BioNTech (BNT162b2) vaccines in Saudi Arabia. METHODS: Hematological parameters and the incidence of anti-platelet factor-4 (anti/PF-4) antibodies were evaluated in 40 participants who were eligible for COVID-19 vaccination in Saudi Arabia (above 18 years old) at Jazan University Hospital. These parameters were assessed at 2 different timepoints; at day 0 (the day of receiving the first dose of Pfizer- BioNTech (BNT162b2) and prior to vaccination) and 14-21 days after receiving the vaccine. RESULTS: Among the participants, 38 (80%) were men, while 12 (20%) were women, with a mean age of 27 years. A total of 15% of the participants reported previous infection with SARS-CoV-2 and 3 patients had a history of diabetes mellitus and hypertension. Hematological parameters results in those vaccines showed no significant changes between the 2 timepoints, such as, day 0 (just before receiving vaccination) and 14 to 21 days post vaccination. Further, anti/PF4 antibodies were negative for all participants following vaccination. CONCLUSION: Our data showed that the incidence of hematological abnormalities or induction of anti/PF4 antibodies following Pfizer-BioNTech (BNT162b2) vaccination is not common, which is consistent with several previous reports. However, larger studies with more participants evaluated at different timepoints following vaccination are warranted to exclude potential transient hematological abnormalities.


Subject(s)
COVID-19 , Thrombocytopenia , Viral Vaccines , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Male , SARS-CoV-2 , Vaccination
5.
Int J Environ Res Public Health ; 19(4)2022 02 19.
Article in English | MEDLINE | ID: covidwho-1709358

ABSTRACT

Coronavirus disease 19 (COVID-19) is an ongoing global pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The severity and mortality rates of COVID-19 are affected by several factors, such as respiratory diseases, diabetes, and hypertension. Bacterial coinfections are another factor that could contribute to the severity of COVID-19. Limited studies have investigated morbidity and mortality due to microbial coinfections in COVID-19 patients. Here, we retrospectively studied the effects of bacterial coinfections on intensive care unit (ICU)-admitted patients with COVID-19 in Asir province, Saudi Arabia. We analyzed electronic medical records of hospitalized patients with COVID-19 at Asir Central Hospital. A total of 34 patients were included, and the clinical data of 16 patients infected with SARS-CoV-2 only and 18 patients coinfected with SARS-CoV-2 and bacterial infections were analyzed in our study. Our data showed that the length of stay at the hospital for patients infected with both SARS-CoV-2 and bacterial infection was 35.2 days, compared to 16.2 days for patients infected with only SARS-CoV-2 (p = 0.0001). In addition, higher mortality rates were associated with patients in the coinfection group compared to the SARS-CoV-2-only infected group (50% vs. 18.7%, respectively). The study also showed that gram-negative bacteria are the most commonly isolated bacteria in COVID-19 patients. To conclude, this study found that individuals with COVID-19 who presented with bacterial infections are at higher risk for a longer stay at the hospital and potentially death. Further studies with a larger population are warranted to better understand the clinical outcomes of COVID-19 with bacterial infections.


Subject(s)
COVID-19 , Coinfection , Bacteria , Coinfection/microbiology , Humans , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology
6.
Int J Environ Res Public Health ; 18(23)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1542523

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, causing unprecedented effects on global health and economies. Community-based serological data are essential for understanding the true prevalence of infections, specifically the subclinical infections, as COVID-19 asymptomatic infections are common. Such data would also be important for decision making around choosing appropriate epidemiological control measures, as well as for the true estimation of mortality rates in the population. Further, determining the seroprevalence of anti-SARS-CoV-2 antibodies in the population would provide important information on herd immunity. In this study, we conducted a population-based age-stratified serological study to understand the prevalence of SARS-CoV-2 in Jazan Province, Saudi Arabia. Out of 594 participants who were recruited from 29 August to 30 December 2020, just before the vaccination rollout program in Saudi Arabia, about 157 were seropositive for SARS-CoV-2, indicating an estimated seropositivity rate of 26%. Although no significant difference in seropositivity was seen between male and female participants, we found that lower seroprevalence was associated with the younger (below 18 years old) and older populations (older than 56 years) compared with other age groups (19-55 years). These data indicate a high prevalence of SARS-CoV-2 antibodies following the peak of COVID-19 spread in Jazan province; however, most of the population (three-quarters) remains susceptible to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Adolescent , Adult , Antibodies, Viral , Female , Humans , Immunoglobulin G , Male , Middle Aged , Pandemics , SARS-CoV-2 , Saudi Arabia/epidemiology , Seroepidemiologic Studies , Young Adult
7.
Int J Lab Hematol ; 44(2): 424-429, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1541737

ABSTRACT

INTRODUCTION: The development of anti-platelet factor 4 (PF4) antibodies is linked to a rare thrombotic complication described now as vaccine-induced immune thrombotic thrombocytopenia (VITT). This clinical syndrome with thrombosis and thrombocytopenia was reported after exposure to the Oxford-AstraZeneca COVID-19 vaccine, ChAdOx1 nCoV-19 vaccine (AZD1222), and Ad26.COV2.S vaccine (Janssen/Johnson & Johnson). In the absence of the clinical features, the incidence of positive anti-PF4 antibodies in asymptomatic individuals post-vaccination is unclear. METHODS: The aim of this study was to evaluate the development of anti-PF4 antibodies in asymptomatic individuals 14-21 days after receiving the first dose of ChAdOx1 nCoV-19 vaccine (AZD1222) and BNT162b2 vaccine. Prospectively, we collected serum from individuals before and after ChAdOx1 nCoV-19 vaccine and BNT162b2 vaccine and measured anti-PF4 antibodies using the Asserachrom HPIA IgG ELISA (Stago, Asnieres, France). RESULTS: We detected positive anti-PF4 antibodies in 5 of 94 asymptomatic individuals post-vaccine with a rate of 5.3% with low titers (OD 0.3-0.7). Four of 5 individuals who tested positive after the vaccine had also positive anti-PF4 antibodies before the vaccine, which indicates that a majority of the positive results are due to preexisting anti-PF4 antibodies. We did not find a relation between the development of anti-PF4 antibodies and the immune response to the vaccine, status of prior COVID-19 infection, and baseline characteristics of participants. None of the participants developed thrombosis nor thrombocytopenia. CONCLUSION: Our results provide new evidence to guide the diagnostic algorithm of suspected cases of VITT. In the absence of thrombosis and thrombocytopenia, there is a low utility of testing for anti-PF4 antibodies.


Subject(s)
COVID-19 , Vaccines , Ad26COVS1 , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Platelet Factor 4
8.
Vaccines (Basel) ; 9(11)2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1512739

ABSTRACT

Background: Massive vaccination campaigns have been undertaken globally to combat the spread of the Coronavirus Disease 2019 (COVID-19). While most COVID-19 vaccines have shown excellent efficacy and safety profiles in clinical studies, real-world monitoring of vaccine safety is still important. In this study, we aimed to investigate the early side effects of Pfizer-BioNTech (BNT162b2) mRNA vaccine in children between 12-18 years old in Saudi Arabia. Method: To investigate the side effects in children in this age range following the administration of either one or two doses of Pfizer-BioNTech (BNT162b2) mRNA vaccine, we conducted a retrospective, cross-sectional study using a self-administered online survey. General and demographic data were collected, and vaccine-associated side effects following vaccination were evaluated. Results: The study recruited a total of 965 eligible participants. Overall, 571 (60%) of the study participants reported at least one side effect following Pfizer-BioNTech (BNT162b2) mRNA vaccination. The most frequently reported side effects were pain or redness at the site of injection (90%), fatigue (67%), fever (59%), headache (55%), nausea or vomiting (21%), and chest pain and shortness of breath (20%). Joint or bone pain were reported less frequently among our participants (2%). Our data showed that more female participants reported side effects compared to male participants, with 52% and 48%, respectively. Side effects were more common after the second dose compared to the first dose in our study cohort. Conclusions: While 60% of the children (12-18 years old) who received Pfizer-BioNTech (BNT162b2) mRNA vaccine reported side effects, our data showed that these side effects were not different from those that were reported in the clinical trials which lasted only for a few days. Side effects were more common after the second dose. Larger epidemiological and molecular studies are needed to evaluate the safety and the effectiveness of COVID-19 vaccine in protection of children against SARS-CoV-2 reinfections.

9.
Vaccines (Basel) ; 9(11)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1488808

ABSTRACT

BACKGROUND: Saudi Arabia is one of the countries that initiated early vaccination programs despite the global challenges concerning the availability of COVID-19 vaccines. Massive vaccination campaigns have been undertaken in the country; however, negative perception and hesitancy toward vaccines may exist which could reduce public response to vaccination. Further, studies evaluating the current perception and attitude toward COVID-19 vaccines are scarce. Thus, this study aims to assess the community attitudes and perceptions toward COVID-19 vaccines in Jazan Province, Saudi Arabia. METHODS: A cross-sectional, retrospective study using an online questionnaire was conducted among the public in Jazan, the southern region of Saudi Arabia. General and demographic data were collected, and perception and attitude toward COVID-19 vaccines were evaluated. RESULTS: Most participants in this study were female (67%) with a median age of 23 years. The majority held a bachelor's degree, and they trusted the Saudi healthcare system. Our survey showed that 67% of the study participants had positive perceptions toward COVID-19 vaccines, a finding that is significantly associated with receiving the influenza vaccine in the past, the existence of trust on the current healthcare system and holding positive beliefs toward the effectiveness of the current COVID-19 vaccines in reducing the risk of infection, complication, and mortality. CONCLUSIONS: The proportion of the public in Jazan who believed in the COVID-19 vaccine effectiveness is not inferior from similar international reports. Thus, national awareness programs toward the effectiveness of the vaccine could be enhanced to accelerate vaccination coverage. Further, nationwide surveys are warranted to include larger populations from different communities to assess the overall perception toward COVID-19 vaccines in the whole country.

10.
Front Microbiol ; 12: 727455, 2021.
Article in English | MEDLINE | ID: covidwho-1438425

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 µg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.

11.
Front Microbiol ; 11: 2020, 2020.
Article in English | MEDLINE | ID: covidwho-1389203

ABSTRACT

Emerging highly pathogenic human coronaviruses (CoVs) represent a serious ongoing threat to the public health worldwide. The spike (S) proteins of CoVs are surface glycoproteins that facilitate viral entry into host cells via attachment to their respective cellular receptors. The S protein is believed to be a major immunogenic component of CoVs and a target for neutralizing antibodies (nAbs) and most candidate vaccines. Development of a safe and convenient assay is thus urgently needed to determine the prevalence of CoVs nAbs in the population, to study immune response in infected individuals, and to aid in vaccines and viral entry inhibitor evaluation. While live virus-based neutralization assays are used as gold standard serological methods to detect and measure nAbs, handling of highly pathogenic live CoVs requires strict bio-containment conditions in biosafety level-3 (BSL-3) laboratories. On the other hand, use of replication-incompetent pseudoviruses bearing CoVs S proteins could represent a safe and useful method to detect nAbs in serum samples under biosafety level-2 (BSL-2) conditions. Here, we describe a detailed protocol of a safe and convenient assay to generate vesicular stomatitis virus (VSV)-based pseudoviruses to evaluate and measure nAbs against highly pathogenic CoVs. The protocol covers methods to produce VSV pseudovirus bearing the S protein of the Middle East respiratory syndrome-CoV (MERS-CoV) and the severe acute respiratory syndrome-CoV-2 (SARS-CoV-2), pseudovirus titration, and pseudovirus neutralization assay. Such assay could be adapted by different laboratories and researchers working on highly pathogenic CoVs without the need to handle live viruses in the BSL-3 environment.

12.
Vaccines (Basel) ; 9(8)2021 Aug 04.
Article in English | MEDLINE | ID: covidwho-1341734

ABSTRACT

The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is worthy of further preclinical and clinical evaluation.

13.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1325787

ABSTRACT

Healthcare workers (HCWs) are at high risk for SARS-CoV-2 infection compared to the general population. Here, we aimed to evaluate and characterize the SARS-CoV-2 seropositivity rate in randomly collected samples among HCWs from the largest referral hospitals and quarantine sites during the peak of the COVID-19 epidemic in the city of Jeddah, the second largest city in Saudi Arabia, using a cross-sectional analytic study design. Out of 693 participants recruited from 29 June to 10 August 2020, 223 (32.2%, 95% CI: 28.8-35.8) were found to be confirmed seropositive for SARS-CoV-2 antibodies, and among those 197 (88.3%) had never been diagnosed with COVID-19. Seropositivity was not significantly associated with participants reporting COVID-19 compatible symptoms as most seropositive HCW participants 140 (62.8%) were asymptomatic. The large proportion of asymptomatic SARS-CoV-2 cases detected in our study demands periodic testing as a general hospital policy.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing , Chlorocebus aethiops , Cross-Sectional Studies , Female , Health Personnel/statistics & numerical data , Humans , Infection Control , Male , Middle Aged , Quarantine , Referral and Consultation , Saudi Arabia/epidemiology , Seroepidemiologic Studies , Vero Cells
14.
Methods Mol Biol ; 2099: 107-116, 2020.
Article in English | MEDLINE | ID: covidwho-1292549

ABSTRACT

The microneutralization (MN) assay is a standard and important technique in virology, immunology, and epidemiology. It is a highly specific and sensitive assay for evaluating virus-specific neutralizing antibodies (nAbs) in human and animal sera. It provides the most precise answer to whether or not an individual or animal has antibodies that can neutralize or inhibit the infectivity of a specific virus strain. However, using live virus-based MN assay might require working under high containment facilities especially when dealing with high-risk pathogens such as the Middle East respiratory syndrome-coronavirus (MERS-CoV). In this chapter, we describe the isolation, amplification, and titration of MERS-CoV, as well as detailed MN assay to measure nAb levels in sera from different mammalian species.


Subject(s)
Antibodies, Neutralizing/blood , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Humans , Mammals , Neutralization Tests , Vero Cells
15.
Methods Mol Biol ; 2099: 99-106, 2020.
Article in English | MEDLINE | ID: covidwho-1292548

ABSTRACT

Since the emergence of the Middle East respiratory syndrome-coronavirus (MERS-CoV) in 2012, more than 2280 confirmed human infections and 800 associated deaths had been reported to the World Health Organization. MERS-CoV is a single-stranded RNA virus that belongs to the Coronaviridae family. MERS-CoV infection leads to a variety of clinical outcomes in humans ranging from asymptomatic and mild infection to severe acute lung injury and multi-organ failure and death. To study the pathogenesis of MERS-CoV infection and development of medical countermeasures (MCMs) for MERS, a number of genetically modified mouse models have been developed, including various versions of transgenic mice expressing the human DPP4 viral receptor. Tracking and quantifying viral infection, among others, in permissive hosts is a key endpoint for studying MERS pathogenesis and evaluating the efficacy of selected MCMs developed for MERS. In addition to quantifying infectious progeny virus which requires high-containment biosafety level (BSL)-3 laboratory, here we outlined an established real-time quantitative RT-PCR (RT-qPCR)-based procedure to unequivocally quantify MERS-CoV-specific RNAs within the lungs of infected human DPP4 (hDPP4, transgenic (hDPP4 Tg) mice under a standard BSL-2 laboratory.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Humans , Lung/virology , Mice , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Real-Time Polymerase Chain Reaction , Receptors, Virus/genetics , Receptors, Virus/metabolism
16.
Vaccines (Basel) ; 9(6)2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1273531

ABSTRACT

BACKGROUND: Pfizer-BioNTech and Oxford-AstraZeneca are recently introduced vaccines to combat COVID-19 pandemic. During clinical trials, mild to moderate side effects have been associated with these vaccines. Thus, we aimed to evaluate short-term post-vaccination side effects. METHODS: Cross-sectional, retrospective study using an online questionnaire was conducted among COVID-19 vaccines recipients in Saudi Arabia. General and demographic data were collected, and vaccine-associated side effects after receiving at least one dose of each vaccine were evaluated. RESULTS: Our final sample consisted of 515 participants with a median age of 26 years. Most of the study participants were female (57%). Nearly 13% of the study subjects have reported previous infections with SARS-CoV-2. Oxford-AstraZeneca and Pfizer-BioNTech vaccines have been received by 75% and 25% of the study participants, respectively. Side effects associated with COVID-19 vaccines have been reported by 60% of the study subjects, and most of them reported fatigue (90%), pain at the site of the injections (85%). CONCLUSION: Side effects that are reported post Oxford-AstraZeneca and Pfizer-BioNTech vaccines among our study participants are not different from those that were reported in the clinical trials, indicating safe profiles for both vaccines. Further studies are needed to evaluate the effectiveness of the current vaccines in protection against SARS-CoV-2 reinfections.

17.
J Infect Public Health ; 14(7): 832-838, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1265761

ABSTRACT

BACKGROUND: Estimated seroprevalence of Coronavirus Infectious Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is a critical evidence for a better evaluation of the virus spread and monitoring the progress of COVID-19 pandemic in a population. In the Kingdom of Saudi Arabia (KSA), SARS-CoV-2 seroprevalence has been reported in specific regions, but an extensive nationwide study has not been reported. Here, we report a nationwide study to determine the prevalence of SARS-CoV-2 in the population of KSA during the pandemic, using serum samples from healthy blood donors, non-COVID patients and healthcare workers (HCWs) in six different regions of the kingdom, with addition samples from COVID-19 patients. METHODS: A total of 11,703 serum samples were collected from different regions of the KSA including; 5395 samples from residual healthy blood donors (D); 5877 samples from non-COVID patients collected through residual sera at clinical biochemistry labs from non-COVID patients (P); and 400 samples from consented HCWs. To determine the seroprevalence of SARS-CoV-2, all serum samples, in addition to positive control sera from RT-PCR confirmed COVID-19 patients, were subjected to in-house ELISA with a sample pooling strategy, which was further validated by testing individual samples that make up some of the pools, with a statistical estimation method to report seroprevalence estimates. RESULTS: Overall (combining D and P groups) seroprevalence estimate was around 11% in Saudi Arabia; and was 5.1% (Riyadh), 1.5% (Jazan), 18.4% (Qassim), 20.8% (Hail), 14.7% (ER; Alahsa), and 18.8% in Makkah. Makkah samples were only D group and had a rate of 24.4% and 12.8% in the cities of Makkah and Jeddah, respectively. The seroprevalence in Saudi Arabia across the sampled areas would be 12 times the reported COVID-19 infection rate. Among HCWs, 7.5% (4.95-10.16 CI 95%) had reactive antibodies to SARS-CoV-2 without reporting any previously confirmed infection. This was higher in HCWs with hypertension. The study also presents the demographics and prevalence of co-morbidities in HCWs and subset of non-COVID-19 population. INTERPRETATION: Our study estimates the overall national serological prevalence of COVID-19 in Saudi Arabia to be 11%, with an apparent disparity between regions. This indicates the prevalence of asymptomatic or mild unreported COVID-19 cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Pandemics , Saudi Arabia/epidemiology , Seroepidemiologic Studies
18.
Pathogens ; 9(12)2020 Dec 19.
Article in English | MEDLINE | ID: covidwho-1006937

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally. Although several rapid commercial serological assays have been developed, little is known about their performance and accuracy in detecting SARS-CoV-2-specific antibodies in COVID-19 patient samples. Here, we have evaluated the performance of seven commercially available rapid lateral flow immunoassays (LFIA) obtained from different manufacturers, and compared them to in-house developed and validated ELISA assays for the detection of SARS-CoV-2-specific IgM and IgG antibodies in RT-PCR-confirmed COVID-19 patients. While all evaluated LFIA assays showed high specificity, our data showed a significant variation in sensitivity of these assays, which ranged from 0% to 54% for samples collected early during infection (3-7 days post symptoms onset) and from 54% to 88% for samples collected at later time points during infection (8-27 days post symptoms onset). Therefore, we recommend prior evaluation and validation of these assays before being routinely used to detect IgM and IgG in COVID-19 patients. Moreover, our findings suggest the use of LFIA assays in combination with other standard methods, and not as an alternative.

19.
Viruses ; 12(12)2020 12 04.
Article in English | MEDLINE | ID: covidwho-966996

ABSTRACT

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunity, Humoral , Immunoglobulin G/blood , Antibodies, Neutralizing/blood , COVID-19/diagnosis , Hospitalization , Humans , Immunoglobulin M/blood , Kinetics , Longitudinal Studies , Neutralization Tests , Nucleocapsid Proteins/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
20.
bioRxiv ; 2020 Jul 05.
Article in English | MEDLINE | ID: covidwho-900735

ABSTRACT

We developed a severe acute respiratory syndrome (SARS) subunit recombinant protein vaccine candidate based on a high-yielding, yeast- engineered, receptor-binding domain (RBD219-N1) of the SARS beta-coronavirus (SARS-CoV) spike (S) protein. When formulated with Alhydrogel®, RBD219-N1 induced high-level neutralizing antibodies against both pseudotyped virus and a clinical (mouse-adapted) isolate of SARS-CoV. Here, we report that mice immunized with RBD219-N1/Alhydrogel® were fully protected from lethal SARS-CoV challenge (0% mortality), compared to ~ 30% mortality in mice when immunized with the SARS S protein formulated with Alhydrogel®, and 100% mortality in negative controls. An RBD219-N1 formulation Alhydrogel® was also superior to the S protein, unadjuvanted RBD, and AddaVax (MF59-like adjuvant)-formulated RBD in inducing specific antibodies and preventing cellular infiltrates in the lungs upon SARS-CoV challenge. Specifically, a formulation with a 1:25 ratio of RBD219-N1 to Alhydrogel® provided high neutralizing antibody titers, 100% protection with non-detectable viral loads with minimal or no eosinophilic pulmonary infiltrates. As a result, this vaccine formulation is under consideration for further development against SARS-CoV and potentially other emerging and re-emerging beta-CoVs such as SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL